00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00029 #include "aac.h"
00030 #include "sbr.h"
00031 #include "aacsbr.h"
00032 #include "aacsbrdata.h"
00033 #include "fft.h"
00034
00035 #include <stdint.h>
00036 #include <float.h>
00037
00038 #define ENVELOPE_ADJUSTMENT_OFFSET 2
00039 #define NOISE_FLOOR_OFFSET 6.0f
00040
00044 enum {
00045 T_HUFFMAN_ENV_1_5DB,
00046 F_HUFFMAN_ENV_1_5DB,
00047 T_HUFFMAN_ENV_BAL_1_5DB,
00048 F_HUFFMAN_ENV_BAL_1_5DB,
00049 T_HUFFMAN_ENV_3_0DB,
00050 F_HUFFMAN_ENV_3_0DB,
00051 T_HUFFMAN_ENV_BAL_3_0DB,
00052 F_HUFFMAN_ENV_BAL_3_0DB,
00053 T_HUFFMAN_NOISE_3_0DB,
00054 T_HUFFMAN_NOISE_BAL_3_0DB,
00055 };
00056
00060 enum {
00061 FIXFIX,
00062 FIXVAR,
00063 VARFIX,
00064 VARVAR,
00065 };
00066
00067 enum {
00068 EXTENSION_ID_PS = 2,
00069 };
00070
00071 static VLC vlc_sbr[10];
00072 static const int8_t vlc_sbr_lav[10] =
00073 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
00074 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
00075 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
00076 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
00077 static const DECLARE_ALIGNED(16, float, zero64)[64];
00078
00079 #define SBR_INIT_VLC_STATIC(num, size) \
00080 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
00081 sbr_tmp[num].sbr_bits , 1, 1, \
00082 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
00083 size)
00084
00085 #define SBR_VLC_ROW(name) \
00086 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
00087
00088 av_cold void ff_aac_sbr_init(void)
00089 {
00090 int n, k;
00091 static const struct {
00092 const void *sbr_codes, *sbr_bits;
00093 const unsigned int table_size, elem_size;
00094 } sbr_tmp[] = {
00095 SBR_VLC_ROW(t_huffman_env_1_5dB),
00096 SBR_VLC_ROW(f_huffman_env_1_5dB),
00097 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
00098 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
00099 SBR_VLC_ROW(t_huffman_env_3_0dB),
00100 SBR_VLC_ROW(f_huffman_env_3_0dB),
00101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
00102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
00103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
00104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
00105 };
00106
00107
00108 SBR_INIT_VLC_STATIC(0, 1098);
00109 SBR_INIT_VLC_STATIC(1, 1092);
00110 SBR_INIT_VLC_STATIC(2, 768);
00111 SBR_INIT_VLC_STATIC(3, 1026);
00112 SBR_INIT_VLC_STATIC(4, 1058);
00113 SBR_INIT_VLC_STATIC(5, 1052);
00114 SBR_INIT_VLC_STATIC(6, 544);
00115 SBR_INIT_VLC_STATIC(7, 544);
00116 SBR_INIT_VLC_STATIC(8, 592);
00117 SBR_INIT_VLC_STATIC(9, 512);
00118
00119 for (n = 0; n < 64; n++) {
00120 float pre = M_PI * n / 64;
00121 analysis_cos_pre[n] = cosf(pre);
00122 analysis_sin_pre[n] = sinf(pre);
00123 }
00124 for (k = 0; k < 32; k++) {
00125 float post = M_PI * (k + 0.5) / 128;
00126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
00127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
00128 }
00129 for (n = 1; n < 320; n++)
00130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
00131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
00132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
00133
00134 for (n = 0; n < 320; n++)
00135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
00136 }
00137
00138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
00139 {
00140 sbr->kx[0] = sbr->kx[1] = 32;
00141 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
00142 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00143 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00144 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
00145 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
00146 }
00147
00148 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
00149 {
00150 ff_mdct_end(&sbr->mdct);
00151 ff_rdft_end(&sbr->rdft);
00152 }
00153
00154 static int qsort_comparison_function_int16(const void *a, const void *b)
00155 {
00156 return *(const int16_t *)a - *(const int16_t *)b;
00157 }
00158
00159 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
00160 {
00161 int i;
00162 for (i = 0; i <= last_el; i++)
00163 if (table[i] == needle)
00164 return 1;
00165 return 0;
00166 }
00167
00169 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
00170 {
00171 int k;
00172 if (sbr->bs_limiter_bands > 0) {
00173 static const float bands_warped[3] = { 1.32715174233856803909f,
00174 1.18509277094158210129f,
00175 1.11987160404675912501f };
00176 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
00177 int16_t patch_borders[5];
00178 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
00179
00180 patch_borders[0] = sbr->kx[1];
00181 for (k = 1; k <= sbr->num_patches; k++)
00182 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
00183
00184 memcpy(sbr->f_tablelim, sbr->f_tablelow,
00185 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
00186 if (sbr->num_patches > 1)
00187 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
00188 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
00189
00190 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
00191 sizeof(sbr->f_tablelim[0]),
00192 qsort_comparison_function_int16);
00193
00194 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
00195 while (out < sbr->f_tablelim + sbr->n_lim) {
00196 if (*in >= *out * lim_bands_per_octave_warped) {
00197 *++out = *in++;
00198 } else if (*in == *out ||
00199 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
00200 in++;
00201 sbr->n_lim--;
00202 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
00203 *out = *in++;
00204 sbr->n_lim--;
00205 } else {
00206 *++out = *in++;
00207 }
00208 }
00209 } else {
00210 sbr->f_tablelim[0] = sbr->f_tablelow[0];
00211 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
00212 sbr->n_lim = 1;
00213 }
00214 }
00215
00216 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
00217 {
00218 unsigned int cnt = get_bits_count(gb);
00219 uint8_t bs_header_extra_1;
00220 uint8_t bs_header_extra_2;
00221 int old_bs_limiter_bands = sbr->bs_limiter_bands;
00222 SpectrumParameters old_spectrum_params;
00223
00224 sbr->start = 1;
00225
00226
00227 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
00228
00229 sbr->bs_amp_res_header = get_bits1(gb);
00230 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
00231 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
00232 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
00233 skip_bits(gb, 2);
00234
00235 bs_header_extra_1 = get_bits1(gb);
00236 bs_header_extra_2 = get_bits1(gb);
00237
00238 if (bs_header_extra_1) {
00239 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
00240 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
00241 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
00242 } else {
00243 sbr->spectrum_params.bs_freq_scale = 2;
00244 sbr->spectrum_params.bs_alter_scale = 1;
00245 sbr->spectrum_params.bs_noise_bands = 2;
00246 }
00247
00248
00249 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
00250 sbr->reset = 1;
00251
00252 if (bs_header_extra_2) {
00253 sbr->bs_limiter_bands = get_bits(gb, 2);
00254 sbr->bs_limiter_gains = get_bits(gb, 2);
00255 sbr->bs_interpol_freq = get_bits1(gb);
00256 sbr->bs_smoothing_mode = get_bits1(gb);
00257 } else {
00258 sbr->bs_limiter_bands = 2;
00259 sbr->bs_limiter_gains = 2;
00260 sbr->bs_interpol_freq = 1;
00261 sbr->bs_smoothing_mode = 1;
00262 }
00263
00264 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
00265 sbr_make_f_tablelim(sbr);
00266
00267 return get_bits_count(gb) - cnt;
00268 }
00269
00270 static int array_min_int16(const int16_t *array, int nel)
00271 {
00272 int i, min = array[0];
00273 for (i = 1; i < nel; i++)
00274 min = FFMIN(array[i], min);
00275 return min;
00276 }
00277
00278 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
00279 {
00280 int k, previous, present;
00281 float base, prod;
00282
00283 base = powf((float)stop / start, 1.0f / num_bands);
00284 prod = start;
00285 previous = start;
00286
00287 for (k = 0; k < num_bands-1; k++) {
00288 prod *= base;
00289 present = lrintf(prod);
00290 bands[k] = present - previous;
00291 previous = present;
00292 }
00293 bands[num_bands-1] = stop - previous;
00294 }
00295
00296 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
00297 {
00298
00299 if (n_master <= 0) {
00300 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
00301 return -1;
00302 }
00303 if (bs_xover_band >= n_master) {
00304 av_log(avccontext, AV_LOG_ERROR,
00305 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
00306 bs_xover_band);
00307 return -1;
00308 }
00309 return 0;
00310 }
00311
00313 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
00314 SpectrumParameters *spectrum)
00315 {
00316 unsigned int temp, max_qmf_subbands;
00317 unsigned int start_min, stop_min;
00318 int k;
00319 const int8_t *sbr_offset_ptr;
00320 int16_t stop_dk[13];
00321
00322 if (sbr->sample_rate < 32000) {
00323 temp = 3000;
00324 } else if (sbr->sample_rate < 64000) {
00325 temp = 4000;
00326 } else
00327 temp = 5000;
00328
00329 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00330 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00331
00332 switch (sbr->sample_rate) {
00333 case 16000:
00334 sbr_offset_ptr = sbr_offset[0];
00335 break;
00336 case 22050:
00337 sbr_offset_ptr = sbr_offset[1];
00338 break;
00339 case 24000:
00340 sbr_offset_ptr = sbr_offset[2];
00341 break;
00342 case 32000:
00343 sbr_offset_ptr = sbr_offset[3];
00344 break;
00345 case 44100: case 48000: case 64000:
00346 sbr_offset_ptr = sbr_offset[4];
00347 break;
00348 case 88200: case 96000: case 128000: case 176400: case 192000:
00349 sbr_offset_ptr = sbr_offset[5];
00350 break;
00351 default:
00352 av_log(ac->avccontext, AV_LOG_ERROR,
00353 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
00354 return -1;
00355 }
00356
00357 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
00358
00359 if (spectrum->bs_stop_freq < 14) {
00360 sbr->k[2] = stop_min;
00361 make_bands(stop_dk, stop_min, 64, 13);
00362 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
00363 for (k = 0; k < spectrum->bs_stop_freq; k++)
00364 sbr->k[2] += stop_dk[k];
00365 } else if (spectrum->bs_stop_freq == 14) {
00366 sbr->k[2] = 2*sbr->k[0];
00367 } else if (spectrum->bs_stop_freq == 15) {
00368 sbr->k[2] = 3*sbr->k[0];
00369 } else {
00370 av_log(ac->avccontext, AV_LOG_ERROR,
00371 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
00372 return -1;
00373 }
00374 sbr->k[2] = FFMIN(64, sbr->k[2]);
00375
00376
00377 if (sbr->sample_rate <= 32000) {
00378 max_qmf_subbands = 48;
00379 } else if (sbr->sample_rate == 44100) {
00380 max_qmf_subbands = 35;
00381 } else if (sbr->sample_rate >= 48000)
00382 max_qmf_subbands = 32;
00383
00384 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
00385 av_log(ac->avccontext, AV_LOG_ERROR,
00386 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
00387 return -1;
00388 }
00389
00390 if (!spectrum->bs_freq_scale) {
00391 unsigned int dk;
00392 int k2diff;
00393
00394 dk = spectrum->bs_alter_scale + 1;
00395 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
00396 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00397 return -1;
00398
00399 for (k = 1; k <= sbr->n_master; k++)
00400 sbr->f_master[k] = dk;
00401
00402 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
00403 if (k2diff < 0) {
00404 sbr->f_master[1]--;
00405 sbr->f_master[2]-= (k2diff < 1);
00406 } else if (k2diff) {
00407 sbr->f_master[sbr->n_master]++;
00408 }
00409
00410 sbr->f_master[0] = sbr->k[0];
00411 for (k = 1; k <= sbr->n_master; k++)
00412 sbr->f_master[k] += sbr->f_master[k - 1];
00413
00414 } else {
00415 int half_bands = 7 - spectrum->bs_freq_scale;
00416 int two_regions, num_bands_0;
00417 int vdk0_max, vdk1_min;
00418 int16_t vk0[49];
00419
00420 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
00421 two_regions = 1;
00422 sbr->k[1] = 2 * sbr->k[0];
00423 } else {
00424 two_regions = 0;
00425 sbr->k[1] = sbr->k[2];
00426 }
00427
00428 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
00429
00430 if (num_bands_0 <= 0) {
00431 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
00432 return -1;
00433 }
00434
00435 vk0[0] = 0;
00436
00437 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
00438
00439 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
00440 vdk0_max = vk0[num_bands_0];
00441
00442 vk0[0] = sbr->k[0];
00443 for (k = 1; k <= num_bands_0; k++) {
00444 if (vk0[k] <= 0) {
00445 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
00446 return -1;
00447 }
00448 vk0[k] += vk0[k-1];
00449 }
00450
00451 if (two_regions) {
00452 int16_t vk1[49];
00453 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
00454 : 1.0f;
00455 int num_bands_1 = lrintf(half_bands * invwarp *
00456 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
00457
00458 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
00459
00460 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
00461
00462 if (vdk1_min < vdk0_max) {
00463 int change;
00464 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00465 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
00466 vk1[1] += change;
00467 vk1[num_bands_1] -= change;
00468 }
00469
00470 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00471
00472 vk1[0] = sbr->k[1];
00473 for (k = 1; k <= num_bands_1; k++) {
00474 if (vk1[k] <= 0) {
00475 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
00476 return -1;
00477 }
00478 vk1[k] += vk1[k-1];
00479 }
00480
00481 sbr->n_master = num_bands_0 + num_bands_1;
00482 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00483 return -1;
00484 memcpy(&sbr->f_master[0], vk0,
00485 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00486 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
00487 num_bands_1 * sizeof(sbr->f_master[0]));
00488
00489 } else {
00490 sbr->n_master = num_bands_0;
00491 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00492 return -1;
00493 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00494 }
00495 }
00496
00497 return 0;
00498 }
00499
00501 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
00502 {
00503 int i, k, sb = 0;
00504 int msb = sbr->k[0];
00505 int usb = sbr->kx[1];
00506 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00507
00508 sbr->num_patches = 0;
00509
00510 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
00511 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
00512 } else
00513 k = sbr->n_master;
00514
00515 do {
00516 int odd = 0;
00517 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
00518 sb = sbr->f_master[i];
00519 odd = (sb + sbr->k[0]) & 1;
00520 }
00521
00522 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
00523 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
00524
00525 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
00526 usb = sb;
00527 msb = sb;
00528 sbr->num_patches++;
00529 } else
00530 msb = sbr->kx[1];
00531
00532 if (sbr->f_master[k] - sb < 3)
00533 k = sbr->n_master;
00534 } while (sb != sbr->kx[1] + sbr->m[1]);
00535
00536 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
00537 sbr->num_patches--;
00538
00539
00540
00541 if (sbr->num_patches > 6) {
00542 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
00543 return -1;
00544 }
00545
00546 return 0;
00547 }
00548
00550 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
00551 {
00552 int k, temp;
00553
00554 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
00555 sbr->n[0] = (sbr->n[1] + 1) >> 1;
00556
00557 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
00558 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
00559 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
00560 sbr->kx[1] = sbr->f_tablehigh[0];
00561
00562
00563 if (sbr->kx[1] + sbr->m[1] > 64) {
00564 av_log(ac->avccontext, AV_LOG_ERROR,
00565 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
00566 return -1;
00567 }
00568 if (sbr->kx[1] > 32) {
00569 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
00570 return -1;
00571 }
00572
00573 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
00574 temp = sbr->n[1] & 1;
00575 for (k = 1; k <= sbr->n[0]; k++)
00576 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
00577
00578 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
00579 log2f(sbr->k[2] / (float)sbr->kx[1])));
00580 if (sbr->n_q > 5) {
00581 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
00582 return -1;
00583 }
00584
00585 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
00586 temp = 0;
00587 for (k = 1; k <= sbr->n_q; k++) {
00588 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
00589 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
00590 }
00591
00592 if (sbr_hf_calc_npatches(ac, sbr) < 0)
00593 return -1;
00594
00595 sbr_make_f_tablelim(sbr);
00596
00597 sbr->data[0].f_indexnoise = 0;
00598 sbr->data[1].f_indexnoise = 0;
00599
00600 return 0;
00601 }
00602
00603 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
00604 int elements)
00605 {
00606 int i;
00607 for (i = 0; i < elements; i++) {
00608 vec[i] = get_bits1(gb);
00609 }
00610 }
00611
00613 static const int8_t ceil_log2[] = {
00614 0, 1, 2, 2, 3, 3,
00615 };
00616
00617 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
00618 GetBitContext *gb, SBRData *ch_data)
00619 {
00620 int i;
00621 unsigned bs_pointer = 0;
00622
00623 int abs_bord_trail = 16;
00624 int num_rel_lead, num_rel_trail;
00625 unsigned bs_num_env_old = ch_data->bs_num_env;
00626
00627 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
00628 ch_data->bs_amp_res = sbr->bs_amp_res_header;
00629 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
00630
00631 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
00632 case FIXFIX:
00633 ch_data->bs_num_env = 1 << get_bits(gb, 2);
00634 num_rel_lead = ch_data->bs_num_env - 1;
00635 if (ch_data->bs_num_env == 1)
00636 ch_data->bs_amp_res = 0;
00637
00638 if (ch_data->bs_num_env > 4) {
00639 av_log(ac->avccontext, AV_LOG_ERROR,
00640 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
00641 ch_data->bs_num_env);
00642 return -1;
00643 }
00644
00645 ch_data->t_env[0] = 0;
00646 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00647
00648 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
00649 ch_data->bs_num_env;
00650 for (i = 0; i < num_rel_lead; i++)
00651 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
00652
00653 ch_data->bs_freq_res[1] = get_bits1(gb);
00654 for (i = 1; i < ch_data->bs_num_env; i++)
00655 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
00656 break;
00657 case FIXVAR:
00658 abs_bord_trail += get_bits(gb, 2);
00659 num_rel_trail = get_bits(gb, 2);
00660 ch_data->bs_num_env = num_rel_trail + 1;
00661 ch_data->t_env[0] = 0;
00662 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00663
00664 for (i = 0; i < num_rel_trail; i++)
00665 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00666 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00667
00668 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00669
00670 for (i = 0; i < ch_data->bs_num_env; i++)
00671 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
00672 break;
00673 case VARFIX:
00674 ch_data->t_env[0] = get_bits(gb, 2);
00675 num_rel_lead = get_bits(gb, 2);
00676 ch_data->bs_num_env = num_rel_lead + 1;
00677 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00678
00679 for (i = 0; i < num_rel_lead; i++)
00680 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00681
00682 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00683
00684 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00685 break;
00686 case VARVAR:
00687 ch_data->t_env[0] = get_bits(gb, 2);
00688 abs_bord_trail += get_bits(gb, 2);
00689 num_rel_lead = get_bits(gb, 2);
00690 num_rel_trail = get_bits(gb, 2);
00691 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
00692
00693 if (ch_data->bs_num_env > 5) {
00694 av_log(ac->avccontext, AV_LOG_ERROR,
00695 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
00696 ch_data->bs_num_env);
00697 return -1;
00698 }
00699
00700 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00701
00702 for (i = 0; i < num_rel_lead; i++)
00703 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00704 for (i = 0; i < num_rel_trail; i++)
00705 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00706 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00707
00708 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00709
00710 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00711 break;
00712 }
00713
00714 if (bs_pointer > ch_data->bs_num_env + 1) {
00715 av_log(ac->avccontext, AV_LOG_ERROR,
00716 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
00717 bs_pointer);
00718 return -1;
00719 }
00720
00721 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
00722
00723 ch_data->t_q[0] = ch_data->t_env[0];
00724 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
00725 if (ch_data->bs_num_noise > 1) {
00726 unsigned int idx;
00727 if (ch_data->bs_frame_class == FIXFIX) {
00728 idx = ch_data->bs_num_env >> 1;
00729 } else if (ch_data->bs_frame_class & 1) {
00730 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
00731 } else {
00732 if (!bs_pointer)
00733 idx = 1;
00734 else if (bs_pointer == 1)
00735 idx = ch_data->bs_num_env - 1;
00736 else
00737 idx = bs_pointer - 1;
00738 }
00739 ch_data->t_q[1] = ch_data->t_env[idx];
00740 }
00741
00742 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old);
00743 ch_data->e_a[1] = -1;
00744 if ((ch_data->bs_frame_class & 1) && bs_pointer) {
00745 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
00746 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1))
00747 ch_data->e_a[1] = bs_pointer - 1;
00748
00749 return 0;
00750 }
00751
00752 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
00753
00754 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
00755 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
00756 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
00757
00758
00759 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
00760 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
00761 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
00762 dst->bs_num_env = src->bs_num_env;
00763 dst->bs_amp_res = src->bs_amp_res;
00764 dst->bs_num_noise = src->bs_num_noise;
00765 dst->bs_frame_class = src->bs_frame_class;
00766 dst->e_a[1] = src->e_a[1];
00767 }
00768
00770 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
00771 SBRData *ch_data)
00772 {
00773 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
00774 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
00775 }
00776
00778 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
00779 SBRData *ch_data)
00780 {
00781 int i;
00782
00783 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
00784 for (i = 0; i < sbr->n_q; i++)
00785 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
00786 }
00787
00788 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
00789 SBRData *ch_data, int ch)
00790 {
00791 int bits;
00792 int i, j, k;
00793 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00794 int t_lav, f_lav;
00795 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00796 const int odd = sbr->n[1] & 1;
00797
00798 if (sbr->bs_coupling && ch) {
00799 if (ch_data->bs_amp_res) {
00800 bits = 5;
00801 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
00802 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
00803 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00804 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00805 } else {
00806 bits = 6;
00807 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
00808 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
00809 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
00810 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
00811 }
00812 } else {
00813 if (ch_data->bs_amp_res) {
00814 bits = 6;
00815 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
00816 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
00817 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00818 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00819 } else {
00820 bits = 7;
00821 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
00822 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
00823 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
00824 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
00825 }
00826 }
00827
00828 for (i = 0; i < ch_data->bs_num_env; i++) {
00829 if (ch_data->bs_df_env[i]) {
00830
00831 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
00832 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00833 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00834 } else if (ch_data->bs_freq_res[i + 1]) {
00835 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00836 k = (j + odd) >> 1;
00837 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00838 }
00839 } else {
00840 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00841 k = j ? 2*j - odd : 0;
00842 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00843 }
00844 }
00845 } else {
00846 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits);
00847 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00848 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00849 }
00850 }
00851
00852
00853 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
00854 sizeof(ch_data->env_facs[0]));
00855 }
00856
00857 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
00858 SBRData *ch_data, int ch)
00859 {
00860 int i, j;
00861 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00862 int t_lav, f_lav;
00863 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00864
00865 if (sbr->bs_coupling && ch) {
00866 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
00867 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
00868 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00869 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00870 } else {
00871 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
00872 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
00873 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00874 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00875 }
00876
00877 for (i = 0; i < ch_data->bs_num_noise; i++) {
00878 if (ch_data->bs_df_noise[i]) {
00879 for (j = 0; j < sbr->n_q; j++)
00880 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
00881 } else {
00882 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5);
00883 for (j = 1; j < sbr->n_q; j++)
00884 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00885 }
00886 }
00887
00888
00889 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
00890 sizeof(ch_data->noise_facs[0]));
00891 }
00892
00893 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
00894 GetBitContext *gb,
00895 int bs_extension_id, int *num_bits_left)
00896 {
00897
00898 switch (bs_extension_id) {
00899 case EXTENSION_ID_PS:
00900 if (!ac->m4ac.ps) {
00901 av_log(ac->avccontext, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
00902 skip_bits_long(gb, *num_bits_left);
00903 *num_bits_left = 0;
00904 } else {
00905 #if 0
00906 *num_bits_left -= ff_ps_data(gb, ps);
00907 #else
00908 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
00909 skip_bits_long(gb, *num_bits_left);
00910 *num_bits_left = 0;
00911 #endif
00912 }
00913 break;
00914 default:
00915 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
00916 skip_bits_long(gb, *num_bits_left);
00917 *num_bits_left = 0;
00918 break;
00919 }
00920 }
00921
00922 static int read_sbr_single_channel_element(AACContext *ac,
00923 SpectralBandReplication *sbr,
00924 GetBitContext *gb)
00925 {
00926 if (get_bits1(gb))
00927 skip_bits(gb, 4);
00928
00929 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00930 return -1;
00931 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00932 read_sbr_invf(sbr, gb, &sbr->data[0]);
00933 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00934 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00935
00936 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00937 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00938
00939 return 0;
00940 }
00941
00942 static int read_sbr_channel_pair_element(AACContext *ac,
00943 SpectralBandReplication *sbr,
00944 GetBitContext *gb)
00945 {
00946 if (get_bits1(gb))
00947 skip_bits(gb, 8);
00948
00949 if ((sbr->bs_coupling = get_bits1(gb))) {
00950 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00951 return -1;
00952 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
00953 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00954 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00955 read_sbr_invf(sbr, gb, &sbr->data[0]);
00956 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00957 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00958 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00959 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00960 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00961 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00962 } else {
00963 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
00964 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
00965 return -1;
00966 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00967 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00968 read_sbr_invf(sbr, gb, &sbr->data[0]);
00969 read_sbr_invf(sbr, gb, &sbr->data[1]);
00970 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00971 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00972 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00973 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00974 }
00975
00976 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00977 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00978 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
00979 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
00980
00981 return 0;
00982 }
00983
00984 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
00985 GetBitContext *gb, int id_aac)
00986 {
00987 unsigned int cnt = get_bits_count(gb);
00988
00989 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
00990 if (read_sbr_single_channel_element(ac, sbr, gb)) {
00991 sbr->start = 0;
00992 return get_bits_count(gb) - cnt;
00993 }
00994 } else if (id_aac == TYPE_CPE) {
00995 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
00996 sbr->start = 0;
00997 return get_bits_count(gb) - cnt;
00998 }
00999 } else {
01000 av_log(ac->avccontext, AV_LOG_ERROR,
01001 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
01002 sbr->start = 0;
01003 return get_bits_count(gb) - cnt;
01004 }
01005 if (get_bits1(gb)) {
01006 int num_bits_left = get_bits(gb, 4);
01007 if (num_bits_left == 15)
01008 num_bits_left += get_bits(gb, 8);
01009
01010 num_bits_left <<= 3;
01011 while (num_bits_left > 7) {
01012 num_bits_left -= 2;
01013 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left);
01014 }
01015 }
01016
01017 return get_bits_count(gb) - cnt;
01018 }
01019
01020 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
01021 {
01022 int err;
01023 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
01024 if (err >= 0)
01025 err = sbr_make_f_derived(ac, sbr);
01026 if (err < 0) {
01027 av_log(ac->avccontext, AV_LOG_ERROR,
01028 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
01029 sbr->start = 0;
01030 }
01031 }
01032
01041 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
01042 GetBitContext *gb_host, int crc, int cnt, int id_aac)
01043 {
01044 unsigned int num_sbr_bits = 0, num_align_bits;
01045 unsigned bytes_read;
01046 GetBitContext gbc = *gb_host, *gb = &gbc;
01047 skip_bits_long(gb_host, cnt*8 - 4);
01048
01049 sbr->reset = 0;
01050
01051 if (!sbr->sample_rate)
01052 sbr->sample_rate = 2 * ac->m4ac.sample_rate;
01053 if (!ac->m4ac.ext_sample_rate)
01054 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
01055
01056 if (crc) {
01057 skip_bits(gb, 10);
01058 num_sbr_bits += 10;
01059 }
01060
01061
01062 sbr->kx[0] = sbr->kx[1];
01063 sbr->m[0] = sbr->m[1];
01064
01065 num_sbr_bits++;
01066 if (get_bits1(gb))
01067 num_sbr_bits += read_sbr_header(sbr, gb);
01068
01069 if (sbr->reset)
01070 sbr_reset(ac, sbr);
01071
01072 if (sbr->start)
01073 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
01074
01075 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
01076 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
01077
01078 if (bytes_read > cnt) {
01079 av_log(ac->avccontext, AV_LOG_ERROR,
01080 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
01081 }
01082 return cnt;
01083 }
01084
01086 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
01087 {
01088 int k, e;
01089 int ch;
01090
01091 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
01092 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
01093 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
01094 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
01095 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
01096 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
01097 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
01098 float fac = temp1 / (1.0f + temp2);
01099 sbr->data[0].env_facs[e][k] = fac;
01100 sbr->data[1].env_facs[e][k] = fac * temp2;
01101 }
01102 }
01103 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
01104 for (k = 0; k < sbr->n_q; k++) {
01105 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
01106 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
01107 float fac = temp1 / (1.0f + temp2);
01108 sbr->data[0].noise_facs[e][k] = fac;
01109 sbr->data[1].noise_facs[e][k] = fac * temp2;
01110 }
01111 }
01112 } else {
01113 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
01114 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
01115 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
01116 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
01117 sbr->data[ch].env_facs[e][k] =
01118 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
01119 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
01120 for (k = 0; k < sbr->n_q; k++)
01121 sbr->data[ch].noise_facs[e][k] =
01122 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
01123 }
01124 }
01125 }
01126
01133 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
01134 float z[320], float W[2][32][32][2],
01135 float scale)
01136 {
01137 int i, k;
01138 memcpy(W[0], W[1], sizeof(W[0]));
01139 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
01140 if (scale != 1.0f)
01141 dsp->vector_fmul_scalar(x+288, in, scale, 1024);
01142 else
01143 memcpy(x+288, in, 1024*sizeof(*x));
01144 for (i = 0; i < 32; i++) {
01145
01146 float re, im;
01147 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
01148 for (k = 0; k < 64; k++) {
01149 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
01150 z[k] = f * analysis_cos_pre[k];
01151 z[k+64] = f;
01152 }
01153 ff_rdft_calc(rdft, z);
01154 re = z[0] * 0.5f;
01155 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
01156 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
01157 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
01158 for (k = 1; k < 32; k++) {
01159 re = z[2*k ] - re;
01160 im = z[2*k+1] - im;
01161 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
01162 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
01163 }
01164 x += 32;
01165 }
01166 }
01167
01172 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
01173 float *out, float X[2][32][64],
01174 float mdct_buf[2][64],
01175 float *v0, int *v_off, const unsigned int div,
01176 float bias, float scale)
01177 {
01178 int i, n;
01179 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
01180 int scale_and_bias = scale != 1.0f || bias != 0.0f;
01181 float *v;
01182 for (i = 0; i < 32; i++) {
01183 if (*v_off == 0) {
01184 int saved_samples = (1280 - 128) >> div;
01185 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
01186 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
01187 } else {
01188 *v_off -= 128 >> div;
01189 }
01190 v = v0 + *v_off;
01191 for (n = 1; n < 64 >> div; n+=2) {
01192 X[1][i][n] = -X[1][i][n];
01193 }
01194 if (div) {
01195 memset(X[0][i]+32, 0, 32*sizeof(float));
01196 memset(X[1][i]+32, 0, 32*sizeof(float));
01197 }
01198 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
01199 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
01200 if (div) {
01201 for (n = 0; n < 32; n++) {
01202 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
01203 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
01204 }
01205 } else {
01206 for (n = 0; n < 64; n++) {
01207 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01208 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01209 }
01210 }
01211 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
01212 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
01213 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
01214 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
01215 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
01216 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
01217 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
01218 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
01219 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
01220 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
01221 if (scale_and_bias)
01222 for (n = 0; n < 64 >> div; n++)
01223 out[n] = out[n] * scale + bias;
01224 out += 64 >> div;
01225 }
01226 }
01227
01228 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
01229 {
01230 int i;
01231 float real_sum = 0.0f;
01232 float imag_sum = 0.0f;
01233 if (lag) {
01234 for (i = 1; i < 38; i++) {
01235 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
01236 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
01237 }
01238 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
01239 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
01240 if (lag == 1) {
01241 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
01242 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
01243 }
01244 } else {
01245 for (i = 1; i < 38; i++) {
01246 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
01247 }
01248 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
01249 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
01250 }
01251 }
01252
01257 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
01258 const float X_low[32][40][2], int k0)
01259 {
01260 int k;
01261 for (k = 0; k < k0; k++) {
01262 float phi[3][2][2], dk;
01263
01264 autocorrelate(X_low[k], phi, 0);
01265 autocorrelate(X_low[k], phi, 1);
01266 autocorrelate(X_low[k], phi, 2);
01267
01268 dk = phi[2][1][0] * phi[1][0][0] -
01269 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
01270
01271 if (!dk) {
01272 alpha1[k][0] = 0;
01273 alpha1[k][1] = 0;
01274 } else {
01275 float temp_real, temp_im;
01276 temp_real = phi[0][0][0] * phi[1][1][0] -
01277 phi[0][0][1] * phi[1][1][1] -
01278 phi[0][1][0] * phi[1][0][0];
01279 temp_im = phi[0][0][0] * phi[1][1][1] +
01280 phi[0][0][1] * phi[1][1][0] -
01281 phi[0][1][1] * phi[1][0][0];
01282
01283 alpha1[k][0] = temp_real / dk;
01284 alpha1[k][1] = temp_im / dk;
01285 }
01286
01287 if (!phi[1][0][0]) {
01288 alpha0[k][0] = 0;
01289 alpha0[k][1] = 0;
01290 } else {
01291 float temp_real, temp_im;
01292 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
01293 alpha1[k][1] * phi[1][1][1];
01294 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
01295 alpha1[k][0] * phi[1][1][1];
01296
01297 alpha0[k][0] = -temp_real / phi[1][0][0];
01298 alpha0[k][1] = -temp_im / phi[1][0][0];
01299 }
01300
01301 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
01302 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
01303 alpha1[k][0] = 0;
01304 alpha1[k][1] = 0;
01305 alpha0[k][0] = 0;
01306 alpha0[k][1] = 0;
01307 }
01308 }
01309 }
01310
01312 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
01313 {
01314 int i;
01315 float new_bw;
01316 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
01317
01318 for (i = 0; i < sbr->n_q; i++) {
01319 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
01320 new_bw = 0.6f;
01321 } else
01322 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
01323
01324 if (new_bw < ch_data->bw_array[i]) {
01325 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
01326 } else
01327 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
01328 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
01329 }
01330 }
01331
01333 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
01334 float X_low[32][40][2], const float W[2][32][32][2])
01335 {
01336 int i, k;
01337 const int t_HFGen = 8;
01338 const int i_f = 32;
01339 memset(X_low, 0, 32*sizeof(*X_low));
01340 for (k = 0; k < sbr->kx[1]; k++) {
01341 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
01342 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
01343 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
01344 }
01345 }
01346 for (k = 0; k < sbr->kx[0]; k++) {
01347 for (i = 0; i < t_HFGen; i++) {
01348 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
01349 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
01350 }
01351 }
01352 return 0;
01353 }
01354
01356 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
01357 float X_high[64][40][2], const float X_low[32][40][2],
01358 const float (*alpha0)[2], const float (*alpha1)[2],
01359 const float bw_array[5], const uint8_t *t_env,
01360 int bs_num_env)
01361 {
01362 int i, j, x;
01363 int g = 0;
01364 int k = sbr->kx[1];
01365 for (j = 0; j < sbr->num_patches; j++) {
01366 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
01367 float alpha[4];
01368 const int p = sbr->patch_start_subband[j] + x;
01369 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
01370 g++;
01371 g--;
01372
01373 if (g < 0) {
01374 av_log(ac->avccontext, AV_LOG_ERROR,
01375 "ERROR : no subband found for frequency %d\n", k);
01376 return -1;
01377 }
01378
01379 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
01380 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
01381 alpha[2] = alpha0[p][0] * bw_array[g];
01382 alpha[3] = alpha0[p][1] * bw_array[g];
01383
01384 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
01385 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
01386 X_high[k][idx][0] =
01387 X_low[p][idx - 2][0] * alpha[0] -
01388 X_low[p][idx - 2][1] * alpha[1] +
01389 X_low[p][idx - 1][0] * alpha[2] -
01390 X_low[p][idx - 1][1] * alpha[3] +
01391 X_low[p][idx][0];
01392 X_high[k][idx][1] =
01393 X_low[p][idx - 2][1] * alpha[0] +
01394 X_low[p][idx - 2][0] * alpha[1] +
01395 X_low[p][idx - 1][1] * alpha[2] +
01396 X_low[p][idx - 1][0] * alpha[3] +
01397 X_low[p][idx][1];
01398 }
01399 }
01400 }
01401 if (k < sbr->m[1] + sbr->kx[1])
01402 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
01403
01404 return 0;
01405 }
01406
01408 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
01409 const float X_low[32][40][2], const float Y[2][38][64][2],
01410 int ch)
01411 {
01412 int k, i;
01413 const int i_f = 32;
01414 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
01415 memset(X, 0, 2*sizeof(*X));
01416 for (k = 0; k < sbr->kx[0]; k++) {
01417 for (i = 0; i < i_Temp; i++) {
01418 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01419 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01420 }
01421 }
01422 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
01423 for (i = 0; i < i_Temp; i++) {
01424 X[0][i][k] = Y[0][i + i_f][k][0];
01425 X[1][i][k] = Y[0][i + i_f][k][1];
01426 }
01427 }
01428
01429 for (k = 0; k < sbr->kx[1]; k++) {
01430 for (i = i_Temp; i < i_f; i++) {
01431 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01432 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01433 }
01434 }
01435 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
01436 for (i = i_Temp; i < i_f; i++) {
01437 X[0][i][k] = Y[1][i][k][0];
01438 X[1][i][k] = Y[1][i][k][1];
01439 }
01440 }
01441 return 0;
01442 }
01443
01447 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
01448 SBRData *ch_data, int e_a[2])
01449 {
01450 int e, i, m;
01451
01452 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
01453 for (e = 0; e < ch_data->bs_num_env; e++) {
01454 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
01455 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01456 int k;
01457
01458 for (i = 0; i < ilim; i++)
01459 for (m = table[i]; m < table[i + 1]; m++)
01460 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
01461
01462
01463 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
01464 for (i = 0; i < sbr->n_q; i++)
01465 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
01466 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
01467
01468 for (i = 0; i < sbr->n[1]; i++) {
01469 if (ch_data->bs_add_harmonic_flag) {
01470 const unsigned int m_midpoint =
01471 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
01472
01473 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
01474 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
01475 }
01476 }
01477
01478 for (i = 0; i < ilim; i++) {
01479 int additional_sinusoid_present = 0;
01480 for (m = table[i]; m < table[i + 1]; m++) {
01481 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
01482 additional_sinusoid_present = 1;
01483 break;
01484 }
01485 }
01486 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
01487 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
01488 }
01489 }
01490
01491 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
01492 }
01493
01495 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
01496 SpectralBandReplication *sbr, SBRData *ch_data)
01497 {
01498 int e, i, m;
01499
01500 if (sbr->bs_interpol_freq) {
01501 for (e = 0; e < ch_data->bs_num_env; e++) {
01502 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01503 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01504 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01505
01506 for (m = 0; m < sbr->m[1]; m++) {
01507 float sum = 0.0f;
01508
01509 for (i = ilb; i < iub; i++) {
01510 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
01511 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
01512 }
01513 e_curr[e][m] = sum * recip_env_size;
01514 }
01515 }
01516 } else {
01517 int k, p;
01518
01519 for (e = 0; e < ch_data->bs_num_env; e++) {
01520 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01521 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01522 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01523 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01524
01525 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
01526 float sum = 0.0f;
01527 const int den = env_size * (table[p + 1] - table[p]);
01528
01529 for (k = table[p]; k < table[p + 1]; k++) {
01530 for (i = ilb; i < iub; i++) {
01531 sum += X_high[k][i][0] * X_high[k][i][0] +
01532 X_high[k][i][1] * X_high[k][i][1];
01533 }
01534 }
01535 sum /= den;
01536 for (k = table[p]; k < table[p + 1]; k++) {
01537 e_curr[e][k - sbr->kx[1]] = sum;
01538 }
01539 }
01540 }
01541 }
01542 }
01543
01548 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
01549 SBRData *ch_data, const int e_a[2])
01550 {
01551 int e, k, m;
01552
01553 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
01554
01555 for (e = 0; e < ch_data->bs_num_env; e++) {
01556 int delta = !((e == e_a[1]) || (e == e_a[0]));
01557 for (k = 0; k < sbr->n_lim; k++) {
01558 float gain_boost, gain_max;
01559 float sum[2] = { 0.0f, 0.0f };
01560 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01561 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
01562 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
01563 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
01564 if (!sbr->s_mapped[e][m]) {
01565 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
01566 ((1.0f + sbr->e_curr[e][m]) *
01567 (1.0f + sbr->q_mapped[e][m] * delta)));
01568 } else {
01569 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
01570 ((1.0f + sbr->e_curr[e][m]) *
01571 (1.0f + sbr->q_mapped[e][m])));
01572 }
01573 }
01574 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01575 sum[0] += sbr->e_origmapped[e][m];
01576 sum[1] += sbr->e_curr[e][m];
01577 }
01578 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01579 gain_max = FFMIN(100000, gain_max);
01580 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01581 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
01582 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
01583 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
01584 }
01585 sum[0] = sum[1] = 0.0f;
01586 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01587 sum[0] += sbr->e_origmapped[e][m];
01588 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
01589 + sbr->s_m[e][m] * sbr->s_m[e][m]
01590 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
01591 }
01592 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01593 gain_boost = FFMIN(1.584893192, gain_boost);
01594 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01595 sbr->gain[e][m] *= gain_boost;
01596 sbr->q_m[e][m] *= gain_boost;
01597 sbr->s_m[e][m] *= gain_boost;
01598 }
01599 }
01600 }
01601 }
01602
01604 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
01605 SpectralBandReplication *sbr, SBRData *ch_data,
01606 const int e_a[2])
01607 {
01608 int e, i, j, m;
01609 const int h_SL = 4 * !sbr->bs_smoothing_mode;
01610 const int kx = sbr->kx[1];
01611 const int m_max = sbr->m[1];
01612 static const float h_smooth[5] = {
01613 0.33333333333333,
01614 0.30150283239582,
01615 0.21816949906249,
01616 0.11516383427084,
01617 0.03183050093751,
01618 };
01619 static const int8_t phi[2][4] = {
01620 { 1, 0, -1, 0},
01621 { 0, 1, 0, -1},
01622 };
01623 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
01624 int indexnoise = ch_data->f_indexnoise;
01625 int indexsine = ch_data->f_indexsine;
01626 memcpy(Y[0], Y[1], sizeof(Y[0]));
01627
01628 if (sbr->reset) {
01629 for (i = 0; i < h_SL; i++) {
01630 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
01631 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
01632 }
01633 } else if (h_SL) {
01634 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
01635 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
01636 }
01637
01638 for (e = 0; e < ch_data->bs_num_env; e++) {
01639 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01640 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
01641 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
01642 }
01643 }
01644
01645 for (e = 0; e < ch_data->bs_num_env; e++) {
01646 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01647 int phi_sign = (1 - 2*(kx & 1));
01648
01649 if (h_SL && e != e_a[0] && e != e_a[1]) {
01650 for (m = 0; m < m_max; m++) {
01651 const int idx1 = i + h_SL;
01652 float g_filt = 0.0f;
01653 for (j = 0; j <= h_SL; j++)
01654 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
01655 Y[1][i][m + kx][0] =
01656 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01657 Y[1][i][m + kx][1] =
01658 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01659 }
01660 } else {
01661 for (m = 0; m < m_max; m++) {
01662 const float g_filt = g_temp[i + h_SL][m];
01663 Y[1][i][m + kx][0] =
01664 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01665 Y[1][i][m + kx][1] =
01666 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01667 }
01668 }
01669
01670 if (e != e_a[0] && e != e_a[1]) {
01671 for (m = 0; m < m_max; m++) {
01672 indexnoise = (indexnoise + 1) & 0x1ff;
01673 if (sbr->s_m[e][m]) {
01674 Y[1][i][m + kx][0] +=
01675 sbr->s_m[e][m] * phi[0][indexsine];
01676 Y[1][i][m + kx][1] +=
01677 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01678 } else {
01679 float q_filt;
01680 if (h_SL) {
01681 const int idx1 = i + h_SL;
01682 q_filt = 0.0f;
01683 for (j = 0; j <= h_SL; j++)
01684 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
01685 } else {
01686 q_filt = q_temp[i][m];
01687 }
01688 Y[1][i][m + kx][0] +=
01689 q_filt * sbr_noise_table[indexnoise][0];
01690 Y[1][i][m + kx][1] +=
01691 q_filt * sbr_noise_table[indexnoise][1];
01692 }
01693 phi_sign = -phi_sign;
01694 }
01695 } else {
01696 indexnoise = (indexnoise + m_max) & 0x1ff;
01697 for (m = 0; m < m_max; m++) {
01698 Y[1][i][m + kx][0] +=
01699 sbr->s_m[e][m] * phi[0][indexsine];
01700 Y[1][i][m + kx][1] +=
01701 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01702 phi_sign = -phi_sign;
01703 }
01704 }
01705 indexsine = (indexsine + 1) & 3;
01706 }
01707 }
01708 ch_data->f_indexnoise = indexnoise;
01709 ch_data->f_indexsine = indexsine;
01710 }
01711
01712 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
01713 {
01714 if (sbr->start) {
01715 sbr_dequant(sbr, id_aac);
01716 }
01717 }
01718
01719 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
01720 const float* in, float* out)
01721 {
01722 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
01723
01724
01725 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
01726 (float*)sbr->qmf_filter_scratch,
01727 sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
01728 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
01729 if (sbr->start) {
01730 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
01731 sbr_chirp(sbr, &sbr->data[ch]);
01732 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
01733 sbr->data[ch].bw_array, sbr->data[ch].t_env,
01734 sbr->data[ch].bs_num_env);
01735
01736
01737 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01738 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
01739 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01740 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
01741 sbr->data[ch].e_a);
01742 }
01743
01744
01745 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
01746 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
01747 sbr->data[ch].synthesis_filterbank_samples,
01748 &sbr->data[ch].synthesis_filterbank_samples_offset,
01749 downsampled,
01750 ac->add_bias, -1024 * ac->sf_scale);
01751 }